NorECs / Support / References Search FAQ Order and Enquiry Contact Language
Published references

These publications have a reference to ProboStat™ or other NorECs products

All   1-25   26-50   51-75   76-100   101-125   126-150   151-175   176-200   201-225   226-250   251-275   276-300   301-325   326-350   351-375   376-400   401-425   426-  

Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications

Authors S.Masciandaro, M. Torrell, P. Leone, A. Tarancón
Source
Journal of the European Ceramic Society
Time of Publication: 2017
Abstract Additive manufacturing represents a revolution due to its unique capabilities for freeform fabrication of near net shapes with strong reduction of waste material and capital cost. These unfair advantages are especially relevant for expensive and energy-demanding manufacturing processes of advanced ceramics such as Yttria-stabilized Zirconia, the state-of-the-art electrolyte in Solid Oxide Fuel Cell applications. In this study, self-supported electrolytes of yttria-stabilized zirconia have been printed by using a stereolithography three-dimensional printer. Printed electrolytes and complete cells fabricated with cathode and anode layers of lanthanum strontium manganite- and nickel oxide-yttria-stabilized zirconia composites, respectively, were electrochemical characterized showing full functionality. In addition, more complex configurations of the electrolyte have been printed yielding an increase of the performance entirely based on geometrical aspects. Complementary, a numerical model has been developed and validated as predictive tool for designing more advanced configurations that will enable highly performing and fully customized devices in the next future.
Keywords Solid oxide fuel cell, 3D printing, Stereolithography, Yttria-stabilized zirconia, Electrolyte
Remark Available online 15 November 2017, https://doi.org/10.1016/j.jeurceramsoc.2017.11.033
Link

Characteristics of LaCo0.4Ni0.6-xCuxO3-δ ceramics as a cathode material for intermediate-temperature solid oxide fuel cells

Authors Yi-XinLiu, Sea-Fue Wang,Yung-Fu Hsu, Hung-Wei Kai, Piotr Jasinski
Source
Journal of the European Ceramic Society
Time of Publication: 2017
Abstract In this study, the effects of Cu-ion substitution on the densification, microstructure, and physical properties of LaCo0.4Ni0.6-xCuxO3-δ ceramics were investigated. The results indicate that doping with Cu ions not only enhances the densification but also promotes the grain growth of LaCo0.4Ni0.6-xCuxO3-δ ceramics. The Cu substitution at x ≤ 0.2 can suppress the formation of La4Ni3O10, while the excess Cu triggers the formation of La2CuO4.032 phase. The p-type conduction of LaCo0.4Ni0.6O3-δ ceramic was significantly raised by Cu substitution because the acceptor doping () triggered the formation of hole carriers; this effect was maximized in the case of LaCo0.4Ni0.4Cu0.2O3-δ composition (1480 S cm−1 at 500 °C). Thermogravimetric data revealed a slight weight increase of 0.29% for LaCo0.4Ni0.4Cu0.2O3-δ compact up to 871 °C; this is due to the incorporation of oxygen that creates metal vacancies and additional carriers, partially compensating the conductivity loss due to the spin-disorder scattering. As the temperature of the LaCo0.4Ni0.4Cu0.2O3-δ compacts rose above 871 °C, significant weight loss with temperature was observed because of the release of lattice oxygen to the ambient air as a result of Co (IV) thermal reduction accompanied by the formation of oxygen vacancies. A solid oxide fuel cell (SOFC) single cell with Sm0.2Ce0.8O2-δ (electrolyte) and LaCo0.4Ni0.4Cu0.2O3-δ (cathode) was built and characterized. The Ohmic (0.256 Ω cm2) and polarization (0.434 Ω cm2) resistances of the single cell at 700 °C were determined; and the maximum power density was 0.535 W cm−2. These results show that LaCo0.4Ni0.4Cu0.2O3-δ is a very promising cathode material for SOFC applications.
Keywords Solid oxide fuel cells, Cell performance, Impedance Cathode
Remark Available online 8 November 2017, https://doi.org/10.1016/j.jeurceramsoc.2017.11.019
Link

Influence of processing on stability, microstructure and thermoelectric properties of Ca3Co4 − xO9 + δ

Authors Nikola Kanasac Sathy, Prakash Singh, Magnus Rotan, Mohsin Saleemi, Michael Bittner, Armin Feldhoff, Truls Norby, Kjell Wiika, Tor Grande, Mari-Ann Einarsrud
Source
Journal of the European Ceramic Society
Time of Publication: 2017
Abstract Due to high figure of merit, Ca3Co4 − xO9 + δ (CCO) has potential as p-type material for high-temperature thermoelectrics. Here, the influence of processing including solid state sintering, spark plasma sintering and post-calcination on stability, microstructure and thermoelectric properties is reported. By a new post-calcination approach, single-phase materials were obtained from precursors to final dense ceramics in one step. The highest zT of 0.11 was recorded at 800 °C for CCO with 98 and 72% relative densities. In situ high-temperature X-ray diffraction in air and oxygen revealed a higher stability of CCO in oxygen (∼970 °C) than in air (∼930 °C), with formation of Ca3Co2O6 which also showed high stability in oxygen, even at 1125 °C. Since achievement of phase pure high density CCO by post-calcination method in air is challenging, the phase stability of CCO in oxygen is important for understanding and further improvement of the method.
Keywords Ca3Co4 − xO9 + δ, Post calcination, Phase stability, Microstructure, Thermoelectric performance
Remark Available online 6 November 2017, https://doi.org/10.1016/j.jeurceramsoc.2017.11.011
Link

Analysis of potential materials for single component fuel cells

Authors Monica Lin, Ashgar Imran, and Peter Lund
Source
FUNCTIONAL NANOSTRUCTURES PROCEEDINGS
Time of Publication: 2017
Abstract The following paper summarizes the results of systematic analysis on single component fuel cell. This recent technology in the solid oxide fuel cell field consists of a unique layer in place of the conventional three-layers structure. The single layer is a mixture of ionic and semi-conductor material. Surprisingly, the expected short circuit has not shown up. On the contrary, the performance is even higher, as reported in literature [1]. This work aims to compare different combinations of materials in terms of performance. La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF), LiNi0.8Co0.15Al0.05O2 (NCAL), La0.8Sr0.2CoO3(LSC), LiNiZn oxide (LNZ) and a new kind of material, CuFe2O4 are analysed as semi-conductor material. As ionic conductor, CeO2/Gd (GDC) is mainly tilised. Also, CeO2/Sm (SDC) and CeO2/Sm/Ca SCDC are considered too.
Remark Link

Thermoelectrochemical Heat Converter

Source
Time of Publication: 2017
Abstract A direct thermoelectrochemical heat-to-electricity converter includes two electrochemical cells at hot and cold temperatures, each having a gas-impermeable, electron-blocking membrane capable of transporting an ion I, and a pair of electrodes on opposite sides of the membrane. Two closed-circuit chambers A and B each includes a working fluid, a pump, and a counter-flow heat exchanger. The chambers are connected to opposite sides of the electrochemical cells and carry their respective working fluids between the two cells. The working fluids are each capable of undergoing a reversible redox half-reaction of the general form R→O+I+e−, where R is a reduced form of an active species in a working fluid and O is the oxidized forms of the active species. One of the first pair of electrodes is electrically connected to one the second pair of electrodes via an electrical load to produce electricity. The device thereby operates such that the first electrochemical cell runs a forward redox reaction, gaining entropy, and the second electrochemical cell runs a reverse redox reaction, expelling entropy.
Remark United States Patent Application 20170288253
Link

High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-δ perovskites as prospective electrode materials for symmetrical SOFC

Authors S.Ya.Istomin, A.V.Morozov, M.M.Abdullayev, M.BatukbJ.Hadermann, S.M.Kazakov, A.V.Sobolev, I.A.Presniakov, E.V.Antipov
Source
Journal of Solid State Chemistry
Volume: 258, Pages: 1-10
Time of Publication: 2018
Abstract La1−yCayFe0.5+x(Mg,Mo)0.5−xO3-δ oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mössbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-δ and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-δ) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-δ is oxygen deficient with δ ≈ 0.15. Oxides are stable in reducing atmosphere (Ar/H2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1−xGdxO2−x/2 electrolyte mixtures treated at 1173–1373K, while Fe-rich compositions (x≥0.1) react with Zr1−xYxO2−x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4–12.7 ppm K−1. In reducing atmosphere their TECs were found to increase up to 12.1–15.4 ppm K−1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.
Keywords Symmetrical solid oxide fuel cell, Perovskites, Crystal structure, High-temperature electrical conductivity
Remark https://doi.org/10.1016/j.jssc.2017.10.005
Link

New Solid Electrolyte Na9Al(MoO4)6: Structure and Na+ Ion Conductivity

Authors Aleksandra A. Savina, Vladimir A. Morozov, Anton L. Buzlukov, Irina Yu. Arapova, Sergey Yu. Stefanovich, Yana V. Baklanova, Tatiana A. Denisova, Nadezhda I. Medvedeva, Michel Bardet, Joke Hadermann, Bogdan I. Lazoryak, and
Source
Chem. Mater.
Volume: 29, Issue: 20, Pages: 8901–8913
Time of Publication: 2017
Abstract Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)6. The monoclinic Na9Al(MoO4)6 consists of isolated polyhedral [Al(MoO4)6]9– clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one Na1O6 octahedron and two Na2O6 octahedra. Na3–Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)3. High-temperature conductivity measurements revealed that the conductivity (σ) of Na9Al(MoO4)6 at 803 K equals 1.63 × 10–2 S cm–1. The temperature behavior of the 23Na and 27Al nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the 23Na nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T<490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3–Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3–Na5 sublattice) only at higher temperatures.
Remark DOI: 10.1021/acs.chemmater.7b03989
Link

Alkali and Alkaline Earth Oxoacid Salts; Synthesis, Hydration, Stability, and Electrical Conductivity

Author AA Elstad
Source
Time of Publication: 2017
Abstract Proton-conducting electrolytes are sough after for use in various applications within the field of electrochemistry. Pure and high proton conductivity has been found in many perovskite-type oxides like BaZrO3 (BZY) and BaCeO3, with BaCeO3-based materials being among the best proton-conducting oxides. In the intermediate temperature range of 400 to 800 C, BZY has been established as one of the most promising materials, exhibiting a protonic conductivity higher than 1  10􀀀2 S cm􀀀1 over the whole temperature range. However, it is difficult to process, and the resulting materials are usually grainy and possess highly resistive grain-boundaries [1]. For low-temperature regions, compounds like CsHSO4 and CsH2PO4 show great potential with respect to protonic conductivity, even displaying superprotonic transitions that immensely increase their conductivity, however their stability is lacking with respect to temperature and solubility in water [2]. With this project, the aim is to broaden the horizon and investigate compounds that fall outside the common perovskite-definition. In this work, various solid acids (E.g. KBaPO4, NaCaHSiO4 and BaH2SiO4), in which the cations are alkali and alkaline earth metals and the anionic groups are separated XO4 tetrahedra, are synthesized and subsequently characterized by X-Ray Diffraction (XRD), Thermogravimetric Analysis (TG), as well as electrical characterization by Impedance Spectroscopy (IS). The work on KBaPO4 culminated in a submitted paper [3]. KBaPO4 has been proposed to transform into a great protonic conductor upon hydration at low temperatures. Effectively, hydration through steam at 80 C is said to give the compound a protonic conductivity of 1  10􀀀2 S cm􀀀1 just below 100 C [4]. This is a remarkable result and, if it can be reproduced, it can become a viable rival to BZY. For this reason, KBaPO4 was chosen as a topic for this work. Here, we synthesize KBaPO4 through a high-temperature solid state reaction, and subsequently characterize the system with respect to thermal stability and its inherent electrical conductivity. Through electrical measurements, we found that the conductivity of pure KBaPO4 was very low, around 2  10􀀀6 S cm􀀀1 at 600 C, with an activation energy exceeding 1 eV. The compound is indifferent to the presence of humidity, and results indicate that the charge carrier in the compound is not protonic, but rather it is theorized to be potassium ions, with potassium Frenkel defects being the predominating defect, however this has not been explicitly confirmed. All in all, we propose a defect model for KBaPO4 with Frenkel defects as the predominating defects. Through attempts at hydrating KBaPO4 in accordance to the method proposed by Goodenough, we found that it does not transform into a high-conductivity phase, but rather decomposes into potassium doped Ba3(PO4)2, and that the resulting system shows similar properties, such as thermal stability (Decomposing at 300 C) and protonic conductivity (1:6  10􀀀6 S cm􀀀1 at 250 C), to the system Ba3-xKxHx(PO4)2 previously investigated by Haile et al. [5], albeit with a significantly lower potassium content than the systems they have characterized, possibly indicating that a saturation of K in Ba3(PO4)2 has been reached. By subsequently heating Ba3-xKxHx(PO4)2 to high temperatures, the system is found to expel potassium and form a two-phase system of Ba3(PO4)2 and a secondary phase of KBaPO4, showing similarities to the system Ba3(1-x)K3x(PO4)2-x previously investigated by Iwahara et al. [6]. Through impedance spectroscopy of said system, we found evidence that points toward the system being a protonic conductor, with a bulk conductivity slightly higher than 1  10􀀀3 S cm􀀀1 at 600 C, and an activation energy of around 0:67 eV. This is one order of magnitude higher than the one previously reported by Iwahara et al., and only one order of magnitude lower than that of BaZrO3. Parallelly, NaCaHSiO4 and related compounds ABHXO4 (A􀀀􀀀 Li, Na or K. B􀀀􀀀 Ca, Sr or Ba. X􀀀􀀀 Si, Ge or Sn) were synthesized hydrothermally and subsequently characterized. Electrical characterization of NaCaHSiO4 gave low conductivities, although protonic, of 1:8  10􀀀8 S cm􀀀1 at 250 C, with an activation energy of 0:9 eV. Based on the results, we propose a defect model in which interstitial hydroxide ions and interstitial protons str significant defects in the compound. However, although NaCaHSiO4 could be successfully synthesized and subsequently characterized, the other syntheses did not yield the desired results. In fact, the only synthesis that yielded a pure product was that which gave Sr2SiO4, possibly providing a hydrothermal approach to synthesizing a compound previously produced by a hightemperature solid state reaction. Lastly, the compound BaH2SiO4 was synthesized, according to a hydrothermal route, and characterized with respect to thermal stability and electrical conductivity. It was found to exhibit a conductivity of 2:5  10􀀀8 S cm􀀀1 at 200 C with an activation energy of 0:88 eV, comparable to that of NaCaHSiO4. Due to BaH2SiO4 showing similar response to various atmospheres as NaCaHSiO4, a defect model containing hydroxide and hydrogen interstitials is proposed for BaH2SiO4 as well. Compared to earlier reports, a discrepancy was found in that the BaH2SiO4 decomposes prior to temperature regions in which data on electrical conductivity has been previously reported. Another, separate investigation into BaH2SiO4 is therefore recommended.
Remark Thesis for the degree of ’Master of Science’, Depertment of Chemistry, University of Oslo
Link

Defect chemistry and electrical properties of BiFeO3

Authors Matthias Schrade, Nahum Masó, Antonio Perejón, Luis A. Pérez-Maqueda and Anthony R. West
Source
Journal of Materials Chemistry C
Issue: 38 Time of Publication: 2017
Abstract BiFeO3 attracts considerable attention for its rich functional properties, including room temperature coexistence of magnetic order and ferroelectricity and more recently, the discovery of conduction pathways along ferroelectric domain walls. Here, insights into the defect chemistry and electrical properties of BiFeO3 are obtained by in situ measurements of electrical conductivity, σ, and Seebeck coefficient, α, of undoped, cation-stoichiometric BiFeO3 and acceptor-doped Bi1−xCaxFeO3−δ ceramics as a function of temperature and oxygen partial pressure pO2. Bi1−xCaxFeO3−δ exhibits p-type conduction; the dependencies of σ and α on pO2 show that Ca dopants are compensated mainly by oxygen vacancies. By contrast, undoped BiFeO3 shows a simultaneous increase of σ and α with increasing pO2, indicating intrinsic behavior with electrons and holes as the main defect species in almost equal concentrations. The pO2-dependency of σ and α cannot be described by a single point defect model but instead, is quantitatively described by a combination of intrinsic and acceptor-doped characteristics attributable to parallel conduction pathways through undoped grains and defect-containing domain walls; both contribute to the total charge transport in BiFeO3. Based on this model, we discuss the charge transport mechanism and carrier mobilities of BiFeO3 and show that several previous experimental findings can readily be explained within the proposed model.
Remark Link

Performance and stability in H2S of SrFe0.75Mo0.25O3-δ as electrode in proton ceramic fuel cells

Authors S.Wachowski, M.Polfus, T.Norby
Source
Journal of the European Ceramic Society
Volume: 38, Issue: 1, Pages: 163-171
Time of Publication: 2018
Abstract The H2S-tolerance of SrFe0.75Mo0.25O3-δ (SFM) electrodes has been investigated in symmetric proton ceramic fuel cells (PCFC) with BaZr0.8Ce0.1Y0.1O3-δ (BZCY81) electrolyte. The ionic conductivity of the electrolyte under wet reducing conditions was found to be insignificantly affected in the presence of up to 5000 ppm H2S. The fuel cell exhibited an OCV of about 0.9 V at 700 °C, which dropped to about 0.6 V and 0.4 V upon exposure to 500 and 5000 ppm H2S, respectively, on the fuel side. Post characterization of the fuel cell revealed significant degradation of the anode in terms of microstructure and chemical composition due to formation of sulfides such as SrS, MoS2 and Fe3S4. Nevertheless, the fuel cell was still functional due to the sufficient electronic conductivity of some of these sulfides.
Keywords Proton ceramic fuel cells (PCFC), Sulfur tolerance, H2S, Strontium ferrite, Barium zirconate
Remark https://doi.org/10.1016/j.jeurceramsoc.2017.08.020
Link

Improvement of thermoelectric properties of lanthanum cobaltate by Sr and Mn co-substitution

Authors Ashutosh Kumar, D. Sivaprahsam, Ajay D. Thakur
Source
Journal of Alloys and Compounds
Volume: 735, Pages: 1787–1791
Time of Publication: 2017-12
Abstract We report thermoelectric (TE) properties of Sr and Mn co-substituted LaCoO3 system from room temperature to 700 K. Sr-substitutions at La and Mn at Co site in LaCoO3 improves the electrical conductivity (σ). Thermal conductivity (κ) of all the samples increases with the increase in temperature but decreases with the substitution in LaCoO3. An estimation of the electronic thermal conductivity (κe) suggests a dominant phonon contribution to thermal conductivity in this system. A maximum value of the figure of merit is 0.14 at 480 K for La0.95Sr0.05Co0.95Mn0.05O3.
Keywords Seebsys, Powders: solid-state reaction, Thermal conductivity, Electrical conductivity, Perovskites
Remark Link

Fabrication and testing of unileg oxide thermoelectric device

Authors Jyothi Sharma, R. D. Purohit, Deep Prakash, and P. K. Sinha
Source
API Conference Proceedings
Time of Publication: 2017
Abstract A prototype of oxide thermoelectric unileg device was fabricated. This device was based on only n-legs made of La doped calcium manganate. The powder was synthesized, characterised and consolidated in rectangular thermoelements. A 3×3 device was fabricated by fitting 9 rectangular bars in alumina housing and connected by silver strips. The device has been tested under large temperature difference (ΔT=480°C) using an indegenous system. An open circuit voltage of 468 mV was obtained for a nine leg unileg device. The device exhibits a internal resistance of ∼1Ω. The maximum power output for this nine leg device reached upto 50 mW in these working condition
Keywords Seebsys
Remark Link

On the formation of phases and their influence on the thermal stability and thermoelectric properties of nanostructured zinc antimonide

Authors Priyadarshini Balasubramanian, Manjusha Battabyal, Duraiswamy Sivaprahasam and Raghavan Gopalan
Source
Journal of Physics D: Applied Physics
Volume: 50, Issue: 1 Time of Publication: 2016-11
Abstract To investigate the thermal reliability of the structure and thermoelectric properties of the zinc antimony compounds, undoped (Zn4Sb3) and doped (Zn4Sb2.95Sn0.05 and Co0.05Zn3.95Sb3) zinc antimonide samples were processed using the powder metallurgy route. It was observed that the as-prepared undoped sample contains a pure β-Zn4Sb3 phase, whereas the doped samples consist of Ω-ZnSb as the major phase and β-Zn4Sb3 as the minor phase. Differential scanning calorimetry analysis confirms the stability of the β-Zn4Sb3 phase up to 600 K. X-ray diffraction data of the undoped and doped samples show that the nanocrystallinity of the as-prepared samples is retained after one thermal cycle. The thermal bandgap, thermopower and thermal conductivity are not affected by the thermal cycle for the doped samples. A maximum power factor of 0.6 mW m−1 K−2 was achieved in the Sn-doped sample (Zn4Sb2.95Sn0.05). This is enhanced to 0.72 mW m−1 K−2 after one thermal cycle at 650 K under Ar atmosphere and slightly decreases after the third thermal cycle. In the case of the Co-doped sample (Co0.05Zn3.95Sb3), the power factor increases from 0.4 mW m−1 K−2 to 0.7 mW m−1 K−2 after the third thermal cycle. A figure of merit of ~0.3 is achieved at 573 K in the Zn4Sb2.95Sn0.05 sample. The results from the nanoindentation experiment show that Youngs modulus of the Sn-doped sample (Zn4Sb2.95Sn0.05) after the thermal cycle is enhanced (96 GPa) compared to the as-prepared sample (~76 GPa). These important findings on the thermal stability of the thermoelectric and mechanical properties of Sn-doped samples (Zn4Sb2.95Sn0.05) confirm that Sn-doped zinc antimonide samples can be used as efficient thermoelectric materials for device applications.
Keywords Seebsys
Remark Link

The effect of Cu2O nanoparticle dispersion on the thermoelectric properties of n-type skutterudites

Authors M Battabyal, B Priyadarshini, D Sivaprahasam, N S Karthiselva, R Gopalan
Source
Journal of Physics D: Applied Physics
Volume: 48, Issue: 45 Publisher: IOP Publishing Ltd, Time of Publication: 2015-11
Abstract We report the thermoelectric properties of Ba0.4Co4Sb12 and Sn0.4Ba0.4Co4Sb12 skutterudites dispersed with Cu2O nanoparticles. The samples were synthesized by ball milling and consolidated by spark plasma sintering. Dispersion of Cu2O is found to significantly influence the electrical resistivity and thermopower at high temperatures with a more pronounced effect on the electrical resistivity due to the energy filtering effect at the interface between Cu2O nanoparticles and a Ba0.4Co4Sb12 and Sn0.4Ba0.4Co4Sb12 matrix. At 573 K, the electrical resistivity of Ba0.4Co4Sb12 decreases from 5.01  ×  10−5 Ohmm to 2.98  ×  10−5 Ohmm upon dispersion of Cu2O. The dispersion of Cu2O reduces the thermal conductivity of the samples from 300 K and above by increasing the phonon scattering. The lowest observed thermal conductivity at 573 K is found to be 2.001 W mK−1 in Cu2O dispersed Ba0.4Co4Sb12 while it is 2.91 W mK−1 in the Ba0.4Co4Sb12 sample without Cu2O dispersion. Hence Cu2O dispersion plays a significant role in the thermoelectric properties and a maximum figure of merit (ZT ) ~ 0.92 is achieved in Cu2O dispersed Ba0.4Co4Sb12 at 573 K which is more than 200% compared to the pure Ba0.4Co4Sb12 sample. The results from nanoindentation experiments show that the Cu2O dispersed sample (Cu2O  +  Sn0.4Ba0.4Co4Sb11.6) has a higher reduced Youngs modulus (~139 GPa) than the pure Sn0.4Ba0.4Co4Sb11.6 sample (~128 GPa).
Keywords Seebsys
Remark Link

Phase stability and thermoelectric properties of Cu10.5Zn1.5Sb4S13 tetrahedrite

Authors Subramaniam Harisha, Duraisamy Sivaprahasam, Manjusha Battabyal, Raghavan Gopalan
Source
Journal of Alloys and Compounds
Volume: 667, Pages: 323-328
Time of Publication: 2016-05
Abstract Cu10.5Zn1.5Sb4S13 tetrahedrite compound was prepared by mechanical milling of Cu2S, ZnS and Sb2S3 powders and spark plasma sintered (SPS) to dense samples. The phase formation, chemical homogeneity, thermal stability of the compound and the thermoelectric properties of the sintered samples were evaluated. Single phase tetrahedrite with the crystallite size of 40 nm was obtained after 30 h of milling followed by annealing at 573 K for 6 h in an argon atmosphere. In-situ high-temperature X-ray diffraction studies revealed that the phase is stable up to 773 K. The Seebeck coefficient of the sintered samples of density >98% shows p-type behavior with maximum thermopower of 170 μV/K at 573 K. The electrical resistivity (ρ) decreases with temperature up to 475 K and then increases. A low thermal conductivity of 0.5 W/(m⋅K), in combination with moderate power factor gave a maximum ZT of ∼0.038 at 573 K in Cu10.5Zn1.5Sb4S13 sample having a grain size of ∼200 nm.
Keywords Seebsys, Thermoelectric, Tetrahedrite, Solid state reactions, Spark plasma sintering, Figure of merit
Remark Cu10.5Zn1.5Sb4S13
Link

Study of novel proton conductors for high temperature Solid Oxide Cells

Author Anastasia Iakovleva
Source
Time of Publication: 2015
Abstract The main objective of the present work was the systematic study of several groups of materials: Gd3-xMexGaO6-δ (Me = Ca2+, Sr2+), Ba2Y1+xNb1-xO6-δ , and BaZr0.85Y0.15O3-δ (BZY15) as proton conductors. We developed a synthesis route for each group of materials such as microwave- assisted citric acid combustion method, freezedrying synthesis and modified citrate-EDTA complexing method. Pure nanopowders and dense ceramics were obtained after these syntheses plus a classical sintering process. The structure and composition of the obtained products were characterized by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The temperature dependences of the conductivity were investigated by impedance spectroscopy as a function of pO2 and pH2O. For the family of Gd3-xMexGaO6-δ (Me = Ca2+, Sr2+), we studied the influence of dopant nature and content on the structural and electrical properties. Results indicate that the substitution possible till 10 % of doping content. According to the SEM observations, the grain size is increased with increasing dopant content. Concerning electrical properties, we found an increase of conduction with increasing dopant content. All compounds present a good stability in humid, hydrogen and CO2 containing atmosphere. In case of Ba2Y1+xNb1-xO6-δ materials, the physico-chemical properties of synthesized materials have been characterized by the XRD and SEM techniques. The average grain size increased significantly with increasing amount of Y3+. Conduction properties were slightly improved with the partial substitution of niobium by yttrium. The stability of Ba2Y1+xNb1-xO6-δ compounds was investigated under different atmospheres and conditions. The ionic conduction in this case is quite low, which has been explained by futher molecular dynamics simulations. Finally, we studied the influence of an ZnO and NiO additives on the sintering of BZY15, being these sintering aids used to lower the sintering temperature. Zinc oxide as a sintering aid lowers the sintering temperature by 300 °C and slightly increases the bulk and total conductivity of BZY15.
Remark THESE DE DOCTORAT

Advanced low-temperature ceramic nanocomposite fuel cells using ultra high ionic conductivity electrolytes synthesized through freeze-dried method and solid-route

Authors Muhammad Imran Asghar, Mikko Heikkilä, Peter D.Lund
Source
Materials Today Energy
Volume: 5, Pages: 338-346
Time of Publication: 2017
Abstract Low ionic conductivity and slow reaction kinetics often limit the performance of a ceramic nanocomposite fuel cell (CNFC). Here, we report a novel synthesis method, freeze-dried method, to achieve a record high ionic conductivity for nanocomposite electrolytes (>0.5 S/cm) based on Ce0.85Sm0.15O2 (SDC) and a eutectic mixture of Na2CO3, Li2CO3, K2CO3 (NLK). The highest ionic conductivity (0.55 S/cm) was reached by increasing the carbonate content of the electrolyte to 35 wt%. For the sake of comparison, the nanocomposite electrolytes were also prepared through solid-route. Composite anodes and cathodes for complete fuels were prepared from NiO and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), respectively using both solid-route and freeze-dried nanocomposite electrolytes. Complete fuel cells manufactured from these nanocomposite materials produced ∼1.1 W/cm2 at 550 °C. The EIS measurements revealed low ohmic losses (0.18 Ω cm2) and even lower charge transfer resistance (0.05 Ω cm2). In addition, it was found that the open-circuit-voltage (OCV) of the CNFCs improved from 1.1 V to 1.2 V when a mixture of air and CO2 was supplied as compared to the case when only air was supplied at the cathode. Finally, high temperature X-ray diffraction (HT-XRD) revealed stable structures of SDC, NiO and LSCF up to 600 °C, which shows the thermal stability of these fuel cell materials.
Keywords Fuel cells, Ceramic, Nanocomposite, Carbonate, Ionic conductivity, Perovskite
Remark https://doi.org/10.1016/j.mtener.2017.07.017
Link

Stability and range of the type II Bi1 − xWxO1.5 + 1.5x solid solution

Authors Julia Wind, Paula Kayser, Zhaoming Zhang, Ivana Radosavljevic Evansc, Chris D.Ling
Source
Solid State Ionics
Volume: 308, Pages: 173-180
Time of Publication: 2017
Abstract We have established the stability and range of the cubic type II phase of Bi1 − xWxO1.5 + 1.5x using a combination of X-ray diffraction, neutron diffraction and X-ray absorption spectroscopy. Type II is a high temperature modification that can be obtained by quenching/rapid cooling of samples with compositions between x = 0.148 to x = 0.185. Slower cooling rates yield the stable low temperature polymorph, the tetragonal type Ib phase (Bi rich samples), and mixtures of type Ib and Aurivillius phase (W-rich samples). Throughout the entire solid solution range, type II exhibits a (3 + 3) dimensional incommensurate modulation with modulation vectors slightly smaller than 1/3 based on a cubic fluorite type subcell (δ-Bi2O3). The main structural motifs are well-defined tetrahedra of WO6 octahedra in a δ-Bi2O3-matrix, with additional W being incorporated on corners and face centers of the approximate commensurate 3 × 3 × 3 supercell in octahedral coordination, confirmed by XANES analysis of the W L3-edge. Impedance measurements reveal oxide ionic conductivities comparable to those of yttria-stabilised zirconia even after a decrease in ionic conductivity of about half an order of magnitude on thermal cycling due to transition to the tetragonal type Ib phase.
Keywords Oxide ionic conductors, Solid solution, Bismuth oxide, Incommensurately modulated structures, Neutron diffraction, XANES
Remark https://doi.org/10.1016/j.ssi.2017.07.015
Link

High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells

Authors F.J.Garcia-Garcia, A.M. Beltrán, F. Yubero, A.R. González-Elipe, R.M. Lambert
Source
Journal of Power Sources
Volume: 363, Pages: 251-259
Time of Publication: 2017
Abstract Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable IV characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work.
Keywords Magnetron sputtering, Oblique angle deposition, Thin film anodes, Layered and hybrid structures, SOFC
Remark https://doi.org/10.1016/j.jpowsour.2017.07.085
Link

Relating defect chemistry and electronic transport in the double perovskite Ba1−xGd0.8La0.2+xCo2O6−δ (BGLC)

Authors Einar Vřllestad, Matthias Schrade, Julie Segalini, Ragnar Strandbakke, and Truls Norby
Source
Journal of Materials Chemistry A
Volume: 5, Pages: 15743-15751
Time of Publication: 2017
Abstract Rare earth double perovskites comprise a class of functional oxides with interesting physiochemical properties both for low- and high-temperature applications. However, little can be found relating electrical properties with equilibrium thermodynamics of non-stoichiometry and defects. In the present work, a comprehensive and generally applicable defect chemical model is developed to form the link between the defect chemistry and electronic structure of partially substituted BGLC (Ba1−xGd0.8La0.2+xCo2O6−δ, 0 ≤ x ≤ 0.5). The equilibrium oxygen content of 4 different compositions is determined as a function of pO2 and temperature by thermogravimetric analysis, and combined with defect chemical modelling to obtain defect concentrations and thermodynamic parameters. Oxidation enthalpies determined by TG-DSC become increasingly exothermic (−50 to −120 kJ mol−1) with increased temperature and oxygen non-stoichiometry for all compositions, in excellent agreement with the thermodynamic parameters obtained from the defect chemical model. All compositions display high electrical conductivities (500 to 1000 S cm−1) with shallow pO2-dependencies and small and positive Seebeck coefficients (3 to 15 μV K−1), indicating high degree of degeneracy of the electronic charge carriers. The complex electrical properties of BGLC at elevated temperatures is rationalized by a two-band conduction model where highly mobile p-type charge carriers are transported within the valence band, whereas less mobile “n-type” charge carriers are located in narrow Co 3d band.
Remark DOI: 10.1039/C7TA02659E
Link

Formation of NiO/YSZ functional anode layers of solid oxide fuel cells by magnetron sputtering

Authors I.V. Ionov, A.A. Solov’ev, A.M. Lebedinskii, A.V. Shipilova, E.A. Smolyanskii, A N. Koval’chuk, A.L. Lauk
Source
Russian Journal of Electrochemistry
Volume: 53, Issue: 6, Pages: 670–676
Time of Publication: 2017
Abstract The decrease in the polarization resistance of the anode of solid-oxide fuel cells (SOFCs) due to the formation of an additional NiO/(ZrO2 + 10 mol % Y2O3) (YSZ) functional layer was studied. NiO/YSZ films with different NiO contents were deposited by reactive magnetron sputtering of Ni and Zr–Y targets. The elemental and phase composition of the films was adjusted by regulating oxygen flow rate during the sputtering. The resulting films were studied by scanning electron microscopy and X-ray diffractometry. Comparative tests of planar SOFCs with a NiO/YSZ anode support, NiO/YSZ functional nanostructured anode layer, YSZ electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were performed. It was shown that the formation of a NiO/YSZ functional nanostructured anode leads to a 15–25% increase in the maximum power density of fuel cells in the working temperature range 500–800°C. The NiO/YSZ nanostructured anode layers lead not only to a reduction of the polarization resistance of the anode, but also to the formation of denser electrolyte films during subsequent magnetron sputtering of electrolyte.
Keywords SOFC, magnetron sputtering, nanostructured electrode, thin-film anode, polarization resistance
Remark Link

Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance

Authors J.A.Cebollero, R.Lahoz, M.A.Laguna-Bercero, A.Larrea
Source
Journal of Power Sources
Volume: 360, Pages: 336-344
Time of Publication: 2017
Abstract Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface.
Keywords SOFC, Laser machining, Corrugated surface, Electrode polarisation, Cathode activation, Electrode/electrolyte interface
Remark https://doi.org/10.1016/j.jpowsour.2017.05.106
Link

Suppression of electrical conductivity and switching of conduction mechanisms in ‘stoichiometric’ (Na0.5Bi0.5TiO3)1−x(BiAlO3)x (0 ≤ x ≤ 0.08) solid solutions

Authors Fan Yang, Patrick Wu and Derek C. Sinclair
Source
Journal of Materials Chemistry C
Volume: 5, Pages: 7243-7252
Time of Publication: 2017
Abstract (Na0.5Bi0.5TiO3)1−x(BiAlO3)x (0 ≤ x ≤ 0.08) solid solutions were prepared by a solid state reaction and their electrical properties were established by ac impedance spectroscopy and electromotive force transport number measurements. Incorporation of BiAlO3 (BA) decreases the electrical conductivity of Na0.5Bi0.5TiO3 (NBT) and sequentially changes the conduction mechanism with increasing x from predominant oxide-ion conduction to mixed ionic–electronic conduction and finally to predominant electronic conduction. The suppressed oxide-ion conduction by BA incorporation significantly reduces the dielectric loss at elevated temperatures and produces excellent high-temperature dielectric materials for high BA contents. The possible reasons for the suppressed oxide-ion conduction in the NBT–BA solid solutions have been discussed and we propose that the local structure, especially trapping of oxygen vacancies by Al3+ on the B-site, plays a key role in oxide-ion conduction in these apparently ‘stoichiometric’ NBT-based solid-solution perovskite materials.
Remark DOI: 10.1039/C7TC02519J
Link

High conductive (LiNaK)2CO3Ce0.85Sm0.15O2 electrolyte compositions for IT-SOFC applications

Authors Ieeba Khan, Muhammad Imran Asghar, Peter D.Lund, Suddhasatwa Basu
Source
International Journal of Hydrogen Energy
Volume: 42, Issue: 32, Pages: 20904-20909
Time of Publication: 2017
Abstract Composite electrolytes of lithium, sodium, and potassium carbonate ((LiNaK)2CO3), and samarium doped ceria (SDC) have been synthesized and the carbonate content optimized to study conductivity and its performance in intermediate-temperature solid oxide fuel cell (IT-SOFC). Electrolyte compositions of 20, 25, 30, 35, 45 wt% (LiNaK)2CO3–SDC are fabricated and the physical and electrochemical characterization is carried out using X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscope, and current–voltage measurements. The ionic conductivity of (LiNaK)2CO3–SDC electrolytes increases with increasing carbonate content. The best ionic conductivity is obtained for 45 wt% (LiNaK)2CO3–SDC composite electrolyte (0.72 S cm−1 at 600 °C) followed by the 35 wt% (LiNaK)2CO3–SDC composite electrolyte (0.55 S cm−1 at 600 °C). The symmetrical cell of the 35 wt% (LiNaK)2CO3–SDC composite electrolyte with lanthanum strontium cobalt ferrite (LSCF) electrode in air gives an area specific resistance of 0.155 Ω cm2 at 500 °C. The maximum power density of the fuel cell using 35 wt% (LiNaK)2CO3–SDC composite electrolyte, composite NiO anode and composite LSCF cathode is found to be 801 mW cm−2 at 550 °C.
Keywords IT-SOFC, Ternary carbonate–SDC electrolyte, Carbonate loading, Composite electrolytes
Remark https://doi.org/10.1016/j.ijhydene.2017.05.152
Link

Mixed ionic–electronic conduction in K1/2Bi1/2TiO3

Authors Linhao Li, Ming Li, Ian M. Reaney and Derek C. Sinclair
Source
J. Mater. Chem. C
Volume: 5, Pages: 6300-6310
Time of Publication: 2017
Abstract Recently, it has been reported that the Pb-free piezoelectric perovskite Na1/2Bi1/2TiO3 (NBT) can be compositionally tuned by close control of the A-site starting stoichiometry to exhibit high levels of oxide-ion conduction. The related K1/2Bi1/2TiO3 (KBT) perovskite has also drawn considerable interest as a promising Pb-free piezoelectric material; however, its conduction properties have been less extensively investigated. Here we report on the influence of the K/Bi ratio in the starting composition on the electrical properties using a combination of impedance spectroscopy and ion-transport property measurements. KBT ceramics exhibit mixed ionic–electronic (oxide-ion) conduction with tion ∼ 0.5 at 600–800 °C and although variations in the A-site starting stoichiometry can create a ∼1 order of magnitude difference in the bulk conductivity at >500 °C, the conductivity is low (ca. 0.1 to 1 mS cm−1 at 700 °C) and the activation energy for bulk conduction remains in the range ∼1.2 to 1.5 eV. The high temperature electrical transport properties of KBT are therefore much less sensitive to the starting A-site stoichiometry as compared to NBT. However, KBT ceramics exhibit non-negligible proton conduction at lower temperatures (<300 °C). For K/Bi ≥ 1 the total conductivity of KBT ceramics at room temperature can be as high as ∼0.1 mS cm−1 under wet atmospheric conditions. This study demonstrates ionic conduction to be a common feature in A1/2Bi1/2TiO3 perovskites, where A = Na, K.
Remark DOI: 10.1039/C7TC01786C
Link
norecs.com

This article is the property of its author, please do not redistribute or use elsewhere without checking with the author.