NORECS / Products / Atmosphere Control Search FAQ Order and Enquiry Contact Language
Atmosphere Control Equipment

Our expertise include atmosphere control in research and amongst our products are custom built gas mixers and calculation software sold worldwide.

We are also representative for Vögtlin instruments AG in Norway. Please see the flow section of our pages for more information on Vögtlin products.

 

These articles refer to ProboStat or other NORECS products, filtered with keywords: 'FCMix, ProGasMix, 2Wet, 2Mix'  
ID=286

Functional properties of La0.99X0.01Nb0.99Al0.01O4−δ and La0.99X0.01Nb0.99Ti0.01O4−δ proton conductors where X is an alkaline earth cation

Authors
Source
Journal of the European Ceramic Society
Time of Publication: 2014-12
Abstract Lanthanum niobates with general formulas of La0.99X0.01Nb0.99Al0.01O4−δ and La0.99X0.01Nb0.99Ti0.01O4−δ (X = Mg, Ca, Sr or Ba) were synthesized via the conventional solid state reaction. Specimens with relative density above 96% were produced after sintering. Structural and phase composition studies revealed predominant monoclinic Fergusonite structure for the majority of samples. SEM and TEM studies elucidated the effect of the used dopant combinations on grain growth, micro-crack formation and secondary phase formation. Results from microstructural study were correlated to the grain interior and grain boundary conductivities for selected samples (La0.99Sr0.01Nb0.99Al0.01O4−δ and La0.99Sr0.01Nb0.99Ti0.01O4−δ). The majority of co-doped niobates exhibited appreciable protonic conductivity under humid atmospheres at intermediate temperatures. Sr- or Ca-doped compounds displayed the highest total conductivities with values for LSNA equal to 6 × 10−4 S/cm and 3 × 10−4 S/cm in wet air and in wet 4% H2–Ar (900 °C), respectively. Additionally, thermal expansion was studied to complete functional characterization of co-doped LaNbO4.
Keywords Proton-conducting ceramic materials, Hydrogen transport ceramic membranes, Rare earth ortho-niobates, Acceptor-doped lanthanum niobates, ProGasMix
Remark Link
ID=214

Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6–xWO12–y

Authors
Source
Inorganic Chemistry
Publisher: ACS Publications, Time of Publication: 2013
Abstract Mixed proton–electron conductors (MPEC) can be used as gas separation membranes to extract hydrogen from a gas stream, for example, in a power plant. From the different MPEC, the ceramic material lanthanum tungstate presents an important mixed protonic–electronic conductivity. Lanthanum tungstate La6–xWO12–y (with y = 1.5x + δ and x = 0.5–0.8) compounds were prepared with La/W ratios between 4.8 and 6.0 and sintered at temperatures between 1300 and 1500 °C in order to study the dependence of the single-phase formation region on the La/W ratio and temperature. Furthermore, compounds substituted in the La or W position were prepared. Ce, Nd, Tb, and Y were used for partial substitution at the La site, while Ir, Re, and Mo were applied for W substitution. All substituents were applied in different concentrations. The electrical conductivity of nonsubstituted La6–xWO12–y and for all substituted La6–xWO12–y compounds was measured in the temperature range of 400–900 °C in wet (2.5% H2O) and dry mixtures of 4% H2 in Ar. The greatest improvement in the electrical characteristics was found in the case of 20 mol % substitution with both Re and Mo. After treatment in 100% H2 at 800 °C, the compounds remained unchanged as confirmed with XRD, Raman, and SEM.
Keywords ProGasMix
Remark lanthanum tungstate
La6–xWO12–y
Link
norecs.com

This article is the property of its author, please do not redistribute or use elsewhere without checking with the author.