NorECs / Methods / Permeability measurements Search FAQ Order and Enquiry Contact Language
Permeability measurements

In typical permeability experiments, a disk sample is sealed gas tight over a support tube. A gas or gas mixture is supplied to one side, and one or more species permeate to the other side, where a sweep gas and/or pump collect the gas. The modes of operation are numerous, and so are the ways to analyze the permeation, including gas chromatography (GC) and mass spectroscopy (MS). Typically, an inert gas added to the entry side gas mixture is used for monitoring the presence or absence of background leakage through seal leaks or sample cracks and porosity.

In general, a large sample area or tubular sample is preferable, as it reduces the relative effects of leakage from seal ring and general equipment. It also simplifies the considerations of sample geometry for samples where the thickness is not much smaller than the diameter so that permeation from the side is significant. However, a large sample may put higher requirements to the mechanical assembly and seal.

These articles refer to ProboStat or other NorECs products, filtered with keywords: 'permeability, permibility, ProGasMix'  
ID=339

Chemical stability and H2 flux degradation of cercer membranes based on lanthanum tungstate and lanthanum chromite

Authors Jonathan M. Polfus, , Zuoan Li, Wen Xing, Martin F. Sunding, John C. Walmsley, Marie-Laure Fontaine, Partow P. Henriksen, Rune Bredesen
Source
Journal of Membrane Science
Volume: 503, Pages: 42–47
Time of Publication: 2016
Abstract Ceramic–ceramic composite (cercer) membranes of (Mo-doped) lanthanum tungstate, La27(W,Mo)5O55.5−δ, and lanthanum chromite, La0.87Sr0.13CrO3−δ, have recently been shown to exhibit H2 permeabilities among state-of-the-art. The present work deals with the long-term stability of these cercer membranes in line with concern of flux degradation and phase instability observed in previous studies. The H2 permeability of disc shaped membranes with varying La/W ratio in the lanthanum tungstate phase (5.35≤La/W≤5.50) was measured at 900 and 1000 °C with a feed gas containing 49% H2 and 2.5% H2O for up to 1500 h. It was observed that the H2 permeability decreased by a factor of up to 5.3 over 1500 h at 1000 °C. Post-characterization of the membranes and similarly annealed samples was performed by SEM, STEM and XRD, and segregation of La2O3 was observed. The decrease in H2 permeability was ascribed to the compositional instability of the cation-disordered lanthanum tungstate under the measurement conditions. Equilibration of the La/W ratio by segregation of La2O3 leads to a lower ionic conductivity according to the materials inherent defect chemistry. Partial decomposition and reduction of the lanthanum tungstate phase, presumably to metallic tungsten, was also observed after exposure to nominally dry hydrogen.
Keywords Hydrogen separation; Dense ceramic membrane; Ceramic–ceramic composite; Lanthanum tungstate; Lanthanum chromite
Remark doi:10.1016/j.memsci.2015.12.054
Link
ID=332

Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−δ and Y- or Gd-doped ceria

Authors Elena Rebollo, Cecilia Mortalň, Sonia Escolástico, Stefano Boldrini, Simona Barison, José M. Serra and Monica Fabrizio
Source
Energy Environ. Sci.
Volume: 8, Pages: 3675-3686
Time of Publication: 2015
Abstract Mixed proton and electron conductor ceramic composites were examined as hydrogen separation membranes at moderate temperatures (higher than 500 °C). In particular, dense ceramic composites of BaCe0.65Zr0.20Y0.15O3−δ (BCZ20Y15) and Ce0.85M0.15O2−δ (M = Y and Gd, hereafter referred to as YDC15 and GDC15), as protonic and electronic conducting phases respectively, were successfully prepared and tested as hydrogen separation membranes. The mixture of these oxides improved both chemical and mechanical stability and increased the electronic conductivity in dual-phase ceramic membranes. The synthetic method and sintering conditions were optimized to obtain dense and crack free symmetric membranes. The addition of ZnO as a sintering aid allowed achieving robust and dense composites with homogeneous grain distribution. The chemical compatibility between the precursors and the influence of membrane composition on electrical properties and H2 permeability performances were thoroughly investigated. The highest permeation flux was attained for the 50 : 50 volume ratio BCZ20Y15–GDC15 membrane when the feed and the sweep sides of the membrane were hydrated, reaching values of 0.27 mL min−1 cm−2 at 755 °C on a 0.65 mm thick membrane sample, currently one of the highest H2 fluxes obtained for bulk mixed protonic–electronic membranes. Increasing the temperature to 1040 °C, increased the hydrogen flux up to 2.40 mL min−1 cm−2 when only the sweep side was hydrated. The H2 separation process is attributed to two cooperative mechanisms, i.e. proton transport through the membrane and H2 production via the water splitting reaction coupled with oxygen ion transport. Moreover, these composite systems demonstrated a very good chemical stability under a CO2-rich atmosphere such as catalytic reactors for hydrogen generation.
Remark DOI: 10.1039/C5EE01793A
Link
ID=329

Oxygen permeation and creep behavior of Ca1−xSrxTi0.6Fe0.15Mn0.25O3−δ (x=0, 0.5) membrane materials

Authors Jonathan M. Polfus, Wen Xing, Goran Pećanac, Anita Fossdal, Sidsel M. Hanetho, Yngve Larring, Jürgen Malzbender, Marie-Laure Fontaine, Rune Bredesen
Source
Journal of Membrane Science
Volume: 449, Pages: 172–178
Time of Publication: 2016
Abstract Oxygen permeation measurements were performed on dense symmetric samples of Ca0.5Sr0.5Ti0.6Fe0.15Mn0.25O3−δ and compared to CaTi0.6Fe0.15Mn0.25O3−δ in order to assess the influence of the perovskite lattice volume on oxygen permeation. Oxygen flux measurements were performed in the temperature range 700–1000 °C and as function of feed side pO2pO2 from 10−2 to 1 bar, and at high pressures up to 4 bar with a pO2pO2 of 3.36 bar. The O2 permeability of the Sr-doped sample was significantly lower than that of the Sr-free sample, amounting to 3.9×10−3 mL min−1 cm−1 at 900 °C for a feed side pO2pO2 of 0.21 bar. The O2 permeability of CaTi0.6Fe0.15Mn0.25O3−δ shows little variation with increased feed side pressures and reaches 1.5×10−2 mL min−1 cm−1 at 900 °C for a feed side pO2pO2 of 3.36 bar. This is approximately 1.5 times higher than the O2 permeability with a feed side pO2pO2 of 0.21 bar. Furthermore, in order to assess the applicability of CaTi0.6Fe0.15Mn0.25O3−δ as an oxygen membrane material, creep tests were performed under compressive loads of 30 and 63 MPa, respectively, in air in the temperature range 700–1000 °C; the results indicate a high creep resistance for this class of materials. The measured O2 permeabilities and creep rates are compared with other state-of-the-art membrane materials and their performance for relevant applications is discussed in terms of chemical and mechanical stability.
Keywords Dense ceramic oxygen membrane; Ambipolar transport; Creep; CaTiO3; Calcium titanate
Remark doi:10.1016/j.memsci.2015.10.016
Link
ID=303

Doping strategies for increased oxygen permeability of CaTiO3 based membranes

Authors Jonathan M. Polfus, Wen Xing, Martin F. Sunding, Sidsel M. Hanetho, Paul Inge Dahl, Yngve Larring, Marie-Laure Fontaine, Rune Bredesen
Source
Journal of Membrane Science
Volume: 482, Pages: 137–143
Time of Publication: 2015
Abstract Oxygen permeation measurements are performed on dense samples of CaTi0.85Fe0.15O3−δ, CaTi0.75Fe0.15Mg0.05O3−δ and CaTi0.75Fe0.15Mn0.10O3−δ in combination with density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) in order to assess Mg and Mn as dopants for improving the O2 permeability of CaTi1−xFexO3−δ based oxygen separation membranes. The oxygen permeation measurements were carried out at temperatures ranging between 700 and 1000 °C with feed side oxygen partial pressures between 0.01 and 1 bar. The O2 permeability was experimentally found to be highest for the Mn doped sample over the whole temperature range, reaching 4.2×10−3 ml min−1 cm−1 at 900 °C and 0.21 bar O2 in the feed which corresponds to a 40% increase over the Fe-doped sample and similar to reported values for x=0.2. While the O2 permeability of the Mg doped sample was also higher than the Fe-doped sample, it approached that of the Fe-doped sample above 900 °C. According to the DFT calculations, Mn introduces electronic states within the band gap and will predominately exist in the effectively negative charge state, as indicated by XPS measurements. Mn may therefore improve the ionic and electronic conductivity of CTF based membranes. The results are discussed in terms of the limiting species for ambipolar transport and O2 permeability, i.e., oxygen vacancies and electronic charge carriers.
Keywords Dense ceramic oxygen membrane; Ambipolar transport; Mixed ionic-electronic conduction; CaTiO3; Calcium titanate
Remark doi:10.1016/j.memsci.2015.02.036
Link
ID=295

Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

Authors Guha Manogharan, Meshack Kioko, Clovis Linkous
Source
JOM
Volume: 67, Issue: 3, Pages: 660-667
Time of Publication: 2015
Abstract With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM–EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.
Remark DOI 10.1007/s11837-015-1296-9
Link
ID=294

Hydrogen separation membranes based on dense ceramic composites in the La27W5O55.5–LaCrO3 system

Authors Jonathan M. Polfus, Wen Xing, Marie-Laure Fontaine, Christelle Denonville, Partow P. Henriksen, Rune Bredesen
Source
Journal of Membrane Science
Volume: 479, Pages: 39–45
Time of Publication: 2015
Abstract Some compositions of ceramic hydrogen permeable membranes are promising for integration in high temperature processes such as steam methane reforming due to their high chemical stability in large chemical gradients and CO2 containing atmospheres. In the present work, we investigate the hydrogen permeability of densely sintered ceramic composites (cercer) of two mixed ionic-electronic conductors: La27W3.5Mo1.5O55.5−δ (LWM) containing 30, 40 and 50 wt% La0.87Sr0.13CrO3−δ (LSC). Hydrogen permeation was characterized as a function of temperature, feed side hydrogen partial pressure (0.1–0.9 bar) with wet and dry sweep gas. In order to assess potentially limiting surface kinetics, measurements were also carried out after applying a catalytic Pt-coating to the feed and sweep side surfaces. The apparent hydrogen permeability, with contribution from both H2 permeation and water splitting on the sweep side, was highest for LWM70-LSC30 with both wet and dry sweep gas. The Pt-coating further enhances the apparent H2 permeability, particularly at lower temperatures. The apparent H2 permeability at 700 °C in wet 50% H2 was 1.1×10−3 mL min−1 cm−1 with wet sweep gas, which is higher than for the pure LWM material. The present work demonstrates that designing dual-phase ceramic composites of mixed ionic-electronic conductors is a promising strategy for enhancing the ambipolar conductivity and gas permeability of dense ceramic membranes.
Keywords Hydrogen separation; Dense ceramic membrane; Ceramic–ceramic composite; Lanthanum tungstate; Lanthanum chromite
Remark doi:10.1016/j.memsci.2015.01.027
Link
ID=286

Functional properties of La0.99X0.01Nb0.99Al0.01O4−δ and La0.99X0.01Nb0.99Ti0.01O4−δ proton conductors where X is an alkaline earth cation

Authors Mariya E. Ivanovaa, Wilhelm A. Meulenberga, Justinas Palisaitisb, Doris Sebolda, Cecilia Solísd, Mirko Ziegnere, Jose M. Serrad, Joachim Mayerb, Michael Hänsele, Olivier Guillona
Source
Journal of the European Ceramic Society
Time of Publication: 2014-12
Abstract Lanthanum niobates with general formulas of La0.99X0.01Nb0.99Al0.01O4−δ and La0.99X0.01Nb0.99Ti0.01O4−δ (X = Mg, Ca, Sr or Ba) were synthesized via the conventional solid state reaction. Specimens with relative density above 96% were produced after sintering. Structural and phase composition studies revealed predominant monoclinic Fergusonite structure for the majority of samples. SEM and TEM studies elucidated the effect of the used dopant combinations on grain growth, micro-crack formation and secondary phase formation. Results from microstructural study were correlated to the grain interior and grain boundary conductivities for selected samples (La0.99Sr0.01Nb0.99Al0.01O4−δ and La0.99Sr0.01Nb0.99Ti0.01O4−δ). The majority of co-doped niobates exhibited appreciable protonic conductivity under humid atmospheres at intermediate temperatures. Sr- or Ca-doped compounds displayed the highest total conductivities with values for LSNA equal to 6 × 10−4 S/cm and 3 × 10−4 S/cm in wet air and in wet 4% H2–Ar (900 °C), respectively. Additionally, thermal expansion was studied to complete functional characterization of co-doped LaNbO4.
Keywords Proton-conducting ceramic materials, Hydrogen transport ceramic membranes, Rare earth ortho-niobates, Acceptor-doped lanthanum niobates, ProGasMix
Remark Link
ID=257

Hydrogen permeation characteristics of La27Mo1.5W3.5O55.5

Authors Einar Vřllestad, Camilla K. Vigen, Anna Magrasó, Reidar Haugsrud
Source
Journal of Membrane Science
Volume: 461, Pages: 81–88
Time of Publication: 2014
Abstract Hydrogen permeation in 30% Mo-substituted lanthanum tungsten oxide membranes, La27Mo1.5W3.5O55.5 (LWMo), has been measured as a function of temperature, hydrogen partial pressure gradient, and water vapor pressure in the sweep gas. Transport of hydrogen by means of ambipolar proton–electron conductivity and – with wet sweep gas – water splitting contributes to the measured hydrogen content in the permeate. At 700 °C under dry sweep conditions, the H2 permeability in LWMo was 6×10−46×10−4 mL min−1 cm-1, which is significantly higher than that for state-of-the-art SrCeO3-based membranes. Proton conductivity was identified as rate limiting for ambipolar bulk transport across the membrane. On these bases it is evident that Mo-substitution is a successful doping strategy to increase the n-type conductivity and H2 permeability compared to nominally unsubstituted lanthanum tungsten oxide. A steady-state model based on the Wagner transport theory with partial conductivities as input parameters predicted H2 permeabilities in good agreement with the measured data. LWMo is a highly competitive mixed proton–electron conducting oxide for hydrogen transport membrane applications provided that long term stability can be ensured.
Remark http://dx.doi.org/10.1016/j.memsci.2014.03.011
Link
ID=214

Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6–xWO12–y

Authors Janka Seeger, Mariya E. Ivanova, Wilhelm A. Meulenberg, Doris Sebold, Detlev Stöver, Tobias Scherb, Gerhard Schumacher, Sonia Escolástico, Cecilia Solís, and José M. Serra
Source
Inorganic Chemistry
Publisher: ACS Publications, Time of Publication: 2013
Abstract Mixed proton–electron conductors (MPEC) can be used as gas separation membranes to extract hydrogen from a gas stream, for example, in a power plant. From the different MPEC, the ceramic material lanthanum tungstate presents an important mixed protonic–electronic conductivity. Lanthanum tungstate La6–xWO12–y (with y = 1.5x + δ and x = 0.5–0.8) compounds were prepared with La/W ratios between 4.8 and 6.0 and sintered at temperatures between 1300 and 1500 °C in order to study the dependence of the single-phase formation region on the La/W ratio and temperature. Furthermore, compounds substituted in the La or W position were prepared. Ce, Nd, Tb, and Y were used for partial substitution at the La site, while Ir, Re, and Mo were applied for W substitution. All substituents were applied in different concentrations. The electrical conductivity of nonsubstituted La6–xWO12–y and for all substituted La6–xWO12–y compounds was measured in the temperature range of 400–900 °C in wet (2.5% H2O) and dry mixtures of 4% H2 in Ar. The greatest improvement in the electrical characteristics was found in the case of 20 mol % substitution with both Re and Mo. After treatment in 100% H2 at 800 °C, the compounds remained unchanged as confirmed with XRD, Raman, and SEM.
Keywords ProGasMix
Remark lanthanum tungstate
La6–xWO12–y
Link
norecs.com

This article is the property of its author, please do not redistribute or use elsewhere without checking with the author.